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EHEOLOGICAL BEHAVIOR OF DILUTE SLSPENSIONS “_‘l' 'Zf;.
OF SOLID VISCOELASTIC SPHERES IN A NEWTONIAN FLUID/ TS
J« De Goddard and Chester Miller* o

An analysis is presented of the motion of individual epheres of a
viscoelastic solid suspended in a Newtonian fluid which undergoes a time-
dependent homogeneous deforﬁation.- For the case of small deformation of
the particles, the results of this analysis are then employed to deduce
the macroscopic rheological behavior of a dilute monodisperse suspension
of such particles.

For the special case of purely elastic particles, the rheological
relation obtained here is found to differ from that presented in an earlier
work of Fr8nlick and Sack (1946), by the appearance of certain nonlinear
terms in the rate of deformation.tensor. Moreover, the equation presented
here for elastic particles turns out to be a special case of Oldroydfs

(1958) general equation, with constants which can be directly related to

’

the suspension properties. r
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The problem of deducing theoretically the macroscopic rheological be-
havior of microscopically heterogeneous fluide has received considerable ‘

attention dating from the celebrated early work of Einstein on the

*University of Michigan, Department of Chemical and Metallurgical Engineer-
ing, Ann Arbor, Michigan.
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5“v1500sity of dilute suspensions of =olid spheres in Newtonian liguids.

Due to their particular relevance to an understanding of elastic ef-
fects in emulsions .as well as perhaps in solutions of deformasble macro-
molecules, mathematical models for suspensions of deformable elastic par-
ticles have received a good deal of attention. Following the work of
Frohlich and Sack (1946) on the irrotational flow of dilute suspensiong of
elastic spheres, Oldroyd (1953, 1955) treated suspensions of liquid drop-
lets exhibiting interfaciasl effects and he raised some interesting questions
as to the appropriate generalizations,of Fréhlich and Sack's egquations to
general flows with rotation included. More recently Giesekus (1962) has
made both experimental and theoretical studies of deformsble particles in
certain types of shear fields, the theoretical studies dealing with sim-
plified hydrodynamic models.

The pre;ent analyeis treats suspensions of solid viscoelastic spheresg,
a problem considered earlier by Cerf {1951) in connection with a study of
flow birefringence of polymer solutions. However, Cerf did not consider
the rheology of such suspensions in great detail, and the present study
vas underteken in the hope of elucidating the effect of shear-induced par-
ticle Qeformation and rotation on suspension behavior, when such effects as
Brownian motion can be considered negligible.

After considering first here the motion of individual, isolated par-
ticles suspended in a Newtonian fluid, we ghall coqsider the yghavior £

dilute suspensions.




l.1 Motion of a single viscoelastic sphere in a homogeneous velocity-
gradient field.

We wish to derive here the eguations describing the simultaneous-
rotation and deforﬁation of a single viscoelastic particle placed in a time -
dependent flow field of an incompressible Newtonian fluid with a homo-
gen;ous, i.e>5 gpatially uniform, velocity gradient.

We shall assume that the particle is composed of a homogeneous and .
isotropic, solid-like material and that, in its natural or undeformed,
stresge-free state, the particle is spherical in shape. Furthermore, we
shall suppose that the rheolégicalcon:titutive equation of the solid is
known so that, once the stress history is completely specified over the
surface of the particle, its instantaneous deformation can in principle
be determined.

The problem consists therefore of determining the motion and deforms-
tion of the particle when it is placed iman infinite flow field whose
(time-dependent) velocity distribution, the "undisturbed" flow, is pre-
scribed far from the particle. This is a well-known type of problem which
involves the simultaneous solution of the equations of motion of the fluid
and of the particle, with a matching of the local stress velocity or dis-
placement at the particle surface. Since we shall assume here the absence
of interfacial effects, this matching can be imposed on all'the components

of the velocity vector and stress tensor.

We shell further assuze that the density of the particles is identiczl

to that of the fluid, or that buoyancy forces are otherwise negligible and,




as an approximation, thct inertial forces are everywhere negligible becide
I n thi %

elastic and viscous forces. In

motion of the fluid reduce to the well-known Stokes equations:

wvi =
(1.1)
L'y =0

where y = y(z,t) and p = p(r,t) are the vector velocity field and the pres-
sure field in the fluid and p the fluid viscosity, with r and t denoting, ‘
respectively, the position vector and time. The criteria for validity of
the Stokes approximation for problemi‘of the present type have been rather
throughly discussed elsewhere (e.g., by Happel and Brenner, 1965) and we
chall not elaborate further here on this point.

Now, once the appropriate rheological equation for the particle is
specified a second equation of motion, the analogue of (1.1), can be written
down for the region occupied by the particle. Then, letting primed guan-

tities refer to this region and matching velocity and stress at the sur-

face of the particle 3'(t), say, we shall have:

x(z,t) v'(x,t)

for r on J'(t) (L.2)

I(z,t) T'(z,t)

where g(g,t) is the stress tensor, a second-order tensor field. As is done
here, we shall mainly employ Gibbs' dyadic notation for tensors in the
following analysis, with véctors and tensors denoted by bold face lower- or
upper-case letters, respectively.

One further condition on fluid velocity, far from the particle, will

then suffice in principle for determination of the motion. Letting g



denote henceforth the position vector referred to the mass center of the
particle, we shall take this remaining condition to be

v + z(o) = E(O)'S’ for row | (1.3)

where r = Ig] and 3(0)(t) is a velocity-gradient tensor, x(c) being the
"undisturbed"” flow velocity.

Having thus posed the problem, at least up to a specification of the
rheological equation for the particle, we are led now to an observation
which will greatly facilitate ite solution. In particular, if the material
of the particle is homogeneous and isetropic énd if its instantaneous strain
depends only on the past history of etress, it is plausible to suppose, at
least for solid-like materials, that the motion of the original sphere will
consist of a rigid body rotation plus a homogeneous deformation or, more
precisely, that the velocity-gradient field ie homogeneous inside the par-
ticle. This supposition can be Jjustified heuristically by noting, first
of all, that under a homogeneous deformation a spherical or ellipsoidal
particle will be transformed at any instant into an ellipsoid; further-
more, one can deduce from classical work of Jeffrey (1922) that, for the
motion of rigid solid ellipsoide in homogeneous velocity-grgdient fields,
the fluid stress on the surface of the ellipsoids gives rise to a homogeneous
stress field inside the ellipsoid. Provided then, in the present case,
that & homogeneous stress history gives rise to homogeneous strain in the
rarticle, it remaine only to show that Jeffrey's result carries over to
deformable epheres or ellipsoids. Indeed this is posesible and, moreover,
the complete solution to the present problem can be constructed readily by
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a slight modification of Jeffrey's results, as we now chow.

1.2 ZExtension of Jeffrey's result to deformable ellipsoids.

First of all,'we begin by assuming that the stress inside the par-
ticle is homogeneous; as a conseguence, we can express the velocity y'
in the first equation of (1.2) by

AR
where [' = z'(t), independent of position, is the velocity-gradient tensor
inside the particle. Next, decomposing L' into a symmetric strain-rate
tensor E' and an antisymmetric "fbtatzon" tensor 2', we have
L' = E +9q (1.4)

and the angular velocity vector of the particle is simply - % Vec Q' .

Thus, Equation (1.2) can be replaced by

v' = (E'*Q')r, for r on §'(t) (1.5)
where,X‘(t) is now an ellipsoidal surface. It follows then that, for a
given E' and Q', the fluid motion outside the particle could be determined
from (1.1), (1.3) and (1.5).

In contrast to the foregoing problem statement, the problem treated
by Jeffrey requires the solution of Equation (1.1) subject to the condi-

tions

= Q'sr forron 4'(t)

W

(1.6)

(o), .

v+T for r + =
~ ~ ~ .

vhere again 3'(t) is an ellipsoidal surface and where Q' =0'(t) and




E(°> = Z(O)(t). These equations govern the motion of a rigid ellipsoid in
the absence of any externally applied force, and as shown by Jeffrey the
solﬁtion to this problem permits determination of Q', i.e., of the particle
rotation, once E(O) and any extraneous torgues on the particle are specified.
Considering here the case of zero torgue only, we denote Jeffrey's solu-

tion for the fluid velocity, pressure field,. and particle rotation, respec-

tively, by

v = u {F(O);r,t}

p = qlf(°);5,t} (1.8)
and

g = x5l

without writing any of these down more explicitely for the moment. How-
ever, because of the linearity of Equations (1.1) and due to the absence
of time derivatives in the problem, it follows immediately from (1.6) that

the functions

v = urhpspeler

0o
P = q(z( )-E';z,t} (1.9)
g = wl)g;L,e)

will satisfy (1.1), (1.3) and (1.5), provided of course that the surface
3'(t) in (1.5) is taken to coincide instantaneously with that in (1.6),

and provided further that

LoE) = B) =iy = 0




-

where "tr" denotes the trace of a tensor. This latter condition corresponds
to incompressibility of the particies and, although it does not appear (o
be strictly necessary to the proof at hand, we shall assume henceforth that
the particles are indeed composed of an incompressible material.

It remains now only to observe that Jeffrey's results yleld for the
stress (tensor) field

1 = 7(l58)  for ron 4'(t) (1.10)

i.e., g' is independent of position on the particle surface.

It follows readily then), from the equation of equilibrium of forces, that
T' represents the stress.tensor at any point inside the ellipsoid, if in-
ertial effects are negligible. Otherwise stated, the fluid stress produces
a homogeneous stress inside a rigid ellipsoid, a fact emphasized earlier by
Cerf (1951). On the other hand, for a deforming e.llipsoid the preceding

equation should be replaced by

T = g'{£(°)-§';t)+2pg'(t) for r on §'(t) (1.11)

which can be deduced from (1.9), as will be shown in the following section.
Hence, it follows that our initial assumption of homogeneous strain

in the particle is Jjustified provided, of course, that the homogeneous stress

in (1;10) is rheologically consistent with such a deformation. Moreover,

as indicated by (1.9), the solution to the present problem can be derived

directly from Jeffrey's results, and we shall now exploit this rather

fortunate circumstance.
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41.5 Motion of a slightly deformable sphere.

In the present work we shall restrict our attention to spherical par-
ticles with sufficient rigidity to insure that their deformations are al-
ways smail, although this is not strictly necessary for validity of the
analysis. In particular, and exactly as is done in the classical (1inear)
theory of elasticity, we shall assume that second- and higher-order terms
in the (components of the) strain tensor are all negligible. The necessary
conditions for small strains in the present problem will be stated more pre-
clsely below. . e

We let now a, denote the radius of the underformed sphere and
a;(t), i=l,2;5, the semi-principal axes of the ellipsoid resulting from
its deformation. Denoting further the finite strain tensor by ' and the
Cauchy-Green deformation tensor by g' we shall define the latter by taking
its components to be

(aq, ai)2 for i=j
G y T . (1.12)
0 for if3
on an orthogonal Cartesian coordinate system xi(i=l,2,5) chosen to coincide

with the principal axes of deformation, while we define the former by

G' = I -2¢' (1.13)

/

on an arbitrary system. The equation of the (ellipsoidal) surface of the

particle is merely that of the ellipsoid of the tensor G', i.e.,

s
ai az
i=1

O



- the last equality holding of course in any coordinate frame.
By differentiating the preceding relation with respect to t and by
noting that
g‘f‘ = y' = ['-g for gon d(t)

one has that

@& |

+ (I )*G+G.r' = 0
at ~

or, in terms of C' and E', that

ac! t
E' = == _rrc'C'+(I") (1.14)
~ 'dt ~ o~ ~ ~

Here, (E')f denotes the transpose or dydadic conjugate of [' which by (1.3)
is

ot - g (1.15)

since (g')f = E' and (g')f = -Q'. Eguation (1l.14) will be recognized as
the definition of E' in terms of a "convected" derivative of c'.

In order to express certain of Jeffrey's results in the present nota-
tion, we recall that the components of C' on the axes of the ellipsoid are

JEE-(:—)?

for i#}

i,j=l,é,3. Hence, for the present purposes, it suffices to consider the
semi-principal axes of the ellipsoid in Jeffrey's paper to be functions of
time aq(t).

However, by restricting ourselves to the case of emall strains, we

have that

10



a '2 '3

with similar equations for i=2,3. If then these expressions for aj(t)
in terms of the Ciikt) are substituted into Jeffrey's expression for the
fluid stress on the surface of a rigid ellipsoid, one finds after some
algebra that the components of the stress tensor in (1.10) T' expressed

on the axes of the ellipsoid are

6
T11' = u[5E11(°)(l + 7'011') + % {E22(0>(C11'-022')
+ Bys ) (Cas ' -Ci3 ) 1+ 0(6%) 340 (1.17)
Ti2' = 5HE12(0)(1 - %’Caa')+ 0(c'®)

with similar expressions for Ton', Tx', etc., obtained by cyclic permuta-
. (o) _ (o) . i
tion of the indices 1, 2, 3. Here p =P (t) is the undisturbed pres-
. (o) (o)

sure field far from the ellipsoid, Ejj = Ej; (t) are the components
of the deformation-rate tensor for the undisturbed flow (again expressed

on the axes of the ellipsoid), and O(C'e) denotes quantities which involve
terms of the second order in C;3i', Czp', and Caz'. To derive the preceding

relations from those given by Jeffrey, we have made use of the fact that

the condition for incompressibility of the solid sphere:

3

aj8083 = &, fepcfrimGimi)

~

reduces for small G' to

C11'+Co2"+Ca3"-2(C11'C2'+C11'Cas '+Ca2'Cas ')+ (C'3) = 0O
In this regard we should note that it is necessary to retain the terms of

the second order in the preceding relation as well as those in (1.16)

11l




if one is to arrive at the correct expression for terms of the first
order in {1.17) (by expansion of the integrals, denoted by U, By,
Yos+++, in Jeffrey's paper,in terms of the Cii)‘

Now, Equation (1.17) can be expressed in dyadic notation by noting

that on the present coordinate system (Cij=0, i#J) it ise merely

21 = u[5§(0)+_];5_ [E(O‘).gv_‘_gv‘g(o)]
7 (1.18)
+ 2 521 + 0er?)
where L
290 - 30 . ol
and
5« e 5% g0

' (o)

Also, I denotes the unit tensor and E ie of course the deformation rate
tensor for the undisturbed flow in Jeffrey's problem. Stated in the form
(1.18), the above relation must be valid now on any coordinate system.

Now, since we are dealing here with isotropic materials, it is neces-.
sary to consider only the deviatoric stress tensor, or non-isotropic part
of T, defined by

B =2I+p1 (1.19)

where

L

p = - tr T= -
5 ~

N

T:L
is the pressure. In terms of P, (1.18) becomes then

(o)

E' - 5“{?' +$_ (E(O&).g'.’_g:,g(O))_ _'?_ (E(O):S')E) +0(C"2).«.n

ves (1.20)

which gives the deviatoric stress inside rigid ellipsoids due to the

12



action of fluid stresses at the surface. For incompressible Newtfonian
fluids these stresses are given by
P = 2uE (1.21)

where

3]

= % v v+ (v

is the deformation rate tensor field for the fluid (Ex has components
avi/BXJ on an orthogonal Cartesian system xi). It follows then from the
considerations of the preceding section, in particular from the first
equation of (1.9), that for deformable ellipsoids we shall have now

instead of (1.20)

(1) = sala 2 (argea)- £ aieD)
(1.22)
+ 2u §'+-0(c'2).0.
where
A = A = Mm@ (1.23)
and

¢ o= C'(e)
E' and C' being related by (2.14).

Now, Equation (1.14) contains 2'(t), the (unknown) rotation tensor
for the particle, and we can also derive equations for this tensor from
Jeffrey's results. In fact, one can show easily that Jeffery's formula
for rotation in the absence of torque can be expressed in the present

notation as

Ag+g"(bg)+(62)'£' = §(°)°Q'-£"§(°) (1.24)

13




" where

pg = gr-plo) (1.25)
Q(o) denoting the rotation tensor of the undistrubed flow. (Giesekus (1962)
has put this result in a different form, involving a third-order tensor).
Again, it follows from the preceding section, Equation (1.9), that for de-

forming ellipsoids the tensor g(o) in (1.24) should be replaced by the

tensor A of (1.23). Hence, with the approximation of small strain, the

resulting equation for Af yields, on solution by "successive approximations,”

80 = AC'-C'-A+ ((C'3) (1.26)

where O(C'z) denotes terms involving the squares of the components of g‘.

It should also be pointed out here that, as is the case for a rigid
ellipsoid, the resultant force on a deforming ellipsoid can readily be
shown to vanish, which means in the present context that the ellipsoid
moves with the mean velocity of the undisturbed flow, as presupposed by
(1.3).

In summary now, we note that Equations (1l.14), (1.22) and (1.26), to-
gether with the appropriate rheological equation for the particle relating
E'(t) to P'(t) or, more generally, to the stress history (z'(tl), —o <t1<t)
would fepresent four equatione involving four unknown tensor quantities
P', C', E', and Q'. It appears that for a given velocity gradient tensor
L(o)(t) this system should be determinate, subject of course to the

appropriate set of initial conditions,

14




In closing here, we should emphasize that the above analysis is
necessarily restricted to particles whose rheology is consistent with
the assumption that the homogeneous surface stress of (1.22) implies
finite homogeneous deformation. (Thus, in general, the analysis would not
be applicable to droplets of a Newtonlan fluid with a viscosity different
from that of the surrounding fluid.) We shall consider below a specific
rheological model for the particles, after some consideration of the

macroecopic rheology of particle suspensions.

2. DILUTE SUSPENSIONS OF VISCOEIASTIC SPHERES

Having at our disposal now the equations which govern the motion of
individual, isolated viscoelastic spheres in Newtonilan shear fields, we
chould like next to use them to determine rheological behavior of suspen-
gions of euch particles. However, despite the wealth of papers dealing with
the rheology of dilute systems, it appears that none of the techniques pre-
viously employed are of sufficient generality to permit one to proceed
systematically from a detailed knowledge of individual particle behavior,
or "micro&heology," to a prediction of the macroscopic behavior, or "macro-

' of suspensions. Therefore, it is appropriate here to establish

rheology,'
briefly the technigque to be employed in the present work. This technique

is essentially an extension of that already used by Giesekus (1962).



scopic scale, we have that

fff L(z,t)av = ifff (Q(g,t) + [ﬁ(z:t))f}dV

R (t) A ()

1
= 35 {x(z,t)g +n x(z,t)las
2 f()

where n is the unit outer normal to,X(t). The first equality here follows

-

elods) . (2.2)

]

L3

from the definition of T and the second from an elementary result of vector
calculus, provided that v is continuous across the particle boundaries

$'(t); finally, the third equality is,a consequence of (3.1), together with

J[ zees - i
A(t) ,
(o)

and its transpose, where V is the volume of R(t). Thus, by (2.2), I' "(t)

the (dyadic) relation

is seen to be identical to the volume average of the (microscopic) velocity-

gradient tensor I'(r,t).

We shall now assume that the sample, which is initially homogeneous, re-
mains homogeneous under the above deformation and shall postulate that en-
semble or "sample" averages of stress and velocity gradient can be replaced

by their respective volume averages over the representative sample. De-

noting.these averages by the brackets < > we shall have then, by (2.2),
that |
<r> = r(o) (2.3)

letting, as before, P(r,t) denote the deviatoric stress tensor and noting

that (1.21) holds everywhere in the fluid, we see readily then that

7



<P-2pE> = 9<P'-2pE'> (2.4)

~

vhere @ denotes the ratio of the volume of R'(t) to that of R (t), i.e.,

the volume fraction of the particulate phase R'(t), and where the primes

denote an average over (R'(t).

In light of (2.3), the relation (2.4) can be expressed as

<P>=2u§(o)+q)<£'-2uE'> (2.5) .

where E(o) is the deformation-rate tensor corresponding to the imposed de-
formatipn. It is a relatively easy matter to show that for rigid particles
(E' = Q) the relation (2.5) reduces tg;that employed by Giesekus (19€2).

In order now to apply (2.5) to the present problem, we shall assume,
as is usual for dilute suspensions (¢ << 1), that the interaction between
particles is negligible and, following Happel and Brenner (1965), that the
boundary condition of (2.1) can be replaced by that of (1.3). In other
words, considering any arbitrarily chosen particle, the velocity distribution
in its vicinity is assumed to be governed by (1.1), (1.3) and (1.5). Under
these circumstances it is assumed then that Equations (1.22) to (1.26) will
correctly describe the motion of any particle to terms of order ¢2, for
given initial conditions on its orientation and deformation at some par-
ticulaf-instant of time.

Since we have restricted this analysis to particles which are in-

trinsically spherical and have assumed the absence of torques on the particle,

due to external fields or Brownian effects, it is reasonable to assume further

that, subsequent to any initial state of rest or of isotropic stress in the

18
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sample of suspension, the motion and orientation of the individual par-
ticleé ghould be identical, provided of course that the particies all have
the same rheological behavior. Assuming this to be the case, we can then
replace (2.5) simply by

<P> = 2p g(O) +¢ (P'-2uE") (2.6)

where P'(t) and E'(t), the same now for all particles, are to be determined

.

from the relations given in the preceding section, subject to the condition

) - p = = ¢ =g

) A X3
in some initial state, say, at t = O.

o
As is usual now, the stress <pP> and the velocity-gradient‘g( ) are

taeken to represent gquantities observed on the macroscopic level at a

material "point" in the suspension.

2.2 BSuspensions of viscoelastic spheres.
We consider now a suspension of viscoelastic spheres whose rheological

behavior is assumed to be described by the constitutive equation

c'(t) =(§2'£g'(t)1 (2.7)

t t

L Preg el
}v = E- g - (2.8)

2 |
l+b1$€ +b2%)+-o. |

|
\
i
}' denoting a viscoelastic operator of the form

where k, aj, 8p,... and b3, bp,... are constants and where, for any second
order tensors g(t) associated with a particle, the operation #'/, >t is de-

fined by

i
l
\
|
1
5 l
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E5t) = SBc) + BB (2.9)

Q' being the rotation tensor for the particle. Thus, for

8y = 83 = ... = by = by = ... = 0 (2.10)
the particle is purely elastic and the constant k (with dimensions of
stress) is the elastic modulus of the material.

The condition of small strain in the particle, which was postulated
in Section 2, can now be formulated somewhat more precisely by reguiring
that the characteristic fluid stress on the particle be much smaller than
the elastic modulus k. In tefms of thé”macroscopic deformation tensor

<g> = g
this condition is essentlally equivalent to the requirement that

e dgf T

7 <1 (2.11)

y = ,‘/)( E(O):E(O) (2.12)
2 ~

is the 'shear rate"and 4 is the viscosity of the suspending fluid.

where

It will be convenient in the follbwing discussion to attribute form&lly
an order of magnitude to various tensor quantities, and we shall employ for
this purpose the O-notation already employed above, with the understanding
that it applies to the individual components of tensors. In addition to
the dimensionless number € defined by (2.11) we shall henceforth inclﬁde
other physical parameters in the O-notation to indicate the physical dimen-

sions involved.

20



By employing (1.14) and (1.26) and assuming henceforth that C'

is O(e) we have then that

(2.13)

Ly - & FOPFYON (eo1t)

and the tensor 4 is defined by (1.23).

We shall postulate furtﬂer now that all terms of the second order in
various kinematic tensors which describe the motion of the particle,
c', E',HC'/At, etc., can be neglected. In view of the time-derivatives in-
volved in various of these tensors, it is necessary then that we place re-
strictions on the magnitudes of the time rates of change of certain quan-
tities. However, being unable a priori to formulate such restrictions in
a precise way, we shall assume for present purposes that the term,,BS;,'//SL t
in (2.13) is () (ey), and, as a conseguence, that E' is formally 0 (ey).

Hence (2.13) can in a formally consistent way be replaced by

E = 3+ 00  (2.15)

Furthermore, we can then simplify (1.22) to

.?.' = 5“{§(0)_§t ,,._?7_ (E(O).glwv.g(o))_ _72_ (E(o).gv)z}

~

(2.16)
+ 2uE'+ () (uye?)

and, with appropriate restrictions on higher-order time derivatives , the

21




expression (2.8) for tne operator ¢' can be replaced in the following

analysis by

1l + a1<“§‘€) + ap (%E)Z-f—...
. } = L ' . : (2.17)
FAS
% Lem(f) cef) e
obtained by substituting /4t for f'/4&t.

Hence, by (2.7), (2.16) and (2.17) we find that

Jey =g - Sujig(")-g'

‘2 (E(O)-C'+C'-E(°))--§ (E(O):C')I] + EHJZ(E'}+ 0(*)
T '~ ~~~ 7~ ~o ~

Yo

or formally that
¢ = wJE - 0 (2.18)

s
Substitution of (2.18) into (2.16) givef then

p o= 5w g +37§ff 350 9 &%)
(2.19)
*} 5°)1500)) - 2(§(°):9’? €11 + 0y
Employing these approximations and writing henceforth E for
§(°) = <E>and P for <P > ve find then, on substitution of (2.19) into-
(2.6), that
E o= au(1+ 'Z‘ QJ)E + :2,-2 up B(g--ﬂ. (E) +d§2(g)--g)

(2.20)
-2(8: J{ENL) - SuE

In order now to eliminate E' from this eguation we define an operation

M vy .
(42

- & -
ME) - o - e

=

22



where )L {5 defined now by (2.17). Next, applying this operation to (2.€)

and taking account of (2.7) and (2.15) and (2.17), we find that

MI{p} = 2aM(E]} + o [E'-2uM(E"}]
(2.21)

+ 0 (ore®)
Finally, by appiying the operator

1-2uM )
to both sides of (2.20) and subtracting the resulting equation from (2.21),

we have, as the rneological constitutive equation for the suspension,

P ) e ﬁg
2*5“;{%’—%] = 2u [(l+gcp)E + 34 (1-35.@;(‘6_1:. }]

+ :{2-2 ouZ b(;E,‘-j(gh (g}ig)-e(g:} E})1] (2.22)

to terms which are formally 0(7um62). It will be recalled that the
operator; is defined by (2.17) and the derivative &/8t by (2.1h)
wnile @ is the volume fraction of the particulate phase.

In order for (2.22) to apply to an arbitrary flow field of the suspen-
gion in quesgion it is necessary to interpret F and E as the local spatial
values of the macroscopic stress and deformation-rate tensors P(r,t) and
E(x,t), say, and to postulate that the suspended particles are sufficiently
small ﬁhat higher-order derivatives of the macroscopic velocity field do
not affect the rheological behavior of the suspension, i.e., that the
assumption of homogeneous strain, for the macroscopic sample volume con-
sidered above, remains valid. Moreover, since the particles move with the

mean velocity of the fluid, the derivative £/§t of (2.14) can be interpreted
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as the Jaumann derivative, which for a second-order tensor field B(x,t)

ig defined oy
dE D

It Dt ~

B+ B'Q-Q°B (2.23)

where Q = Q(r,t) is the local rotation tensor and where

X

B = +Vv 9B (2.24) -

Ed

is the material derivative, with y x(g,t) denoting the local flow velocity.
Considering now the simplest example, that of purely elastic spheres

where (2.10) holds in (2.17), we see that (2.22) reduces to

e

i} 5 LE

P+ i < 2u‘[(l +5 ®)§+T(l- % ¢)Z;€ J
(2.25)

29 e - Log.
+ 7 ouT [E E - 3 (E‘E)Z]
where
.3_& .

T _ (2.2€)

is a characteristic time parameter for the syestem.

As one can readily verify, the eguation obtained by dropping the
second term on the right-hand side (with coefficient quT) from (2.25) is
equivalent, to terms of 0(@2),, to the equation derived by Frghlich and
Sack (1946) for the special case of irrotational flow, § = 0. Our analysis
shows; first of all, that the appropriate generalization of Frdhlick and
Sack's equation to rotational flows consigts of replacing their time de-
rivative by the Jaumann derivative, thus answering a question which has‘

been raised by Oldroyd (1953).
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In addition, the result derived here contains nonlinear terms in the
deformation-rate tensor g which, according to the present analycis, arise
from the ellipticity of the deformed spheres. Therefore it would appear
that Fréhlich and Sack's approximation of replacing the particle by a
sphere, in order to simplify boundary conditions, is in error. Of
course, the terms in question are multiplied by 7@ and it might be argued
that these terms should be discarded since we have already neglected terms
of order 02 as well as those of order €2 = (T7)2. However, by adopting this
point of view, we would be forced to replace terms like T(1 - g @), the co-
efficient of oG‘E./.&t in (2.25), by T alone, in our result as well as in
that of Fr%hlich and Sack. This is obviously undesirable, for. by such
reasoning one could eliminate elastic effects entirely from (2.25) reducing

it to the Einstein equation

B o= 2u(l+g‘cp)E

for rigid spheres.

In closing here, it is interesting to note that (2.25) is a special
case of a general rheological equation already proposed by Oldroyd (1958).
By means of the analysis presented in his paper one deduces.that, in a
steady simple-shear flow, a fluid described by (2.25) would exhibit "shear
thinning" and unequal normal stresses in all three directions, all directly
proportional to T, while for flow between rotating cylinders the fluid

should exhibit a positive Weissenberg climbing effect.
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